

Update of Operational Forecasting Systems in China

Guimei LIU

National Marine Environmental Forecasting Center (NMEFC)

Ministry of Natural Resources, Beijing, China

8th Nov., 2023

PART 1

BACKGROUND

Marine safety assurance is the cornerstone of supporting the development of the marine economy

Assist in the development of the marine economy:

- Ocean polar exploration, deep-sea resource development, ocean shipping, ocean fishing, ocean ranching, maritime military and other marine environmental protection needs;
- Major offshore engineering construction, offshore wind power construction, offshore oil development and construction, and other marine economic construction needs.

The core capability of the ocean safety assurance system is observation and prediction, and the key to ocean prediction is the model.

PART 2

Progress in Ocean Forecasting Model and Systems

New model developed

1 Mass Conservation

1st Advantage

More accurate and direct simulation of sea level changes

2nd Advantage

More precise definition of salinity

3rd Advantage

Seafloor pressure observations can be directly assimilated

Mass Conservation Ocean Model

2 Flexible grid support

- Support for various grid forms such as Cubic Sphere, Tripolar
- Helpful to eliminate land points, which can reduce storage and calculation by up to 28%.

• Flexible and intelligent boundary division reduces parallel communication.

3 Heterogeneous computing

The global ten-kilometer (1/12°) ocean circulation numerical forecast can use a single 8-card GPU server to replace the traditional 40-60 CPU computing nodes (2048 cores)

 \checkmark Equipment purchase cost reduced by 2/3

 \checkmark Computing energy consumption reduced by 90%

Application of MaCOM in global ocean

Accurate simulation of Enthalpy

Accurate simulation of Salinity

Global application technology

- Cubic Sphere or Tripolar
- Supports up to 1/24° horizontal resolution
- $\blacktriangleright MCM \text{ or } VCM$
- Tidal potential M₂, S₂, N₂, K₁, O₁, P₁, Q₁, K₂
- Sea ice

Operational configure

- Cubic Sphere
- \succ 1/12° horizontal resolution
- ➤ MCM
- ➢ 4 A100 GPU
- > No tide and ice till now

IVTT Class 4: method

The IVTT International Operational Forecast System Comparison Program was initiated by the international program GODAE OceanView (now known as OceanPredict). It aims to promote countries to improve the technical level of operational oceanography through international comparison of four types of products. The inspection data covers the IVTT USGODAE on-site drifting buoy. , IVTT along-track altimeter J-1/2, Cryosat AltiKa and Argo thermohaline profile.

• $Bias = \frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)$	Country	System	Model	
• $RMSE_{FCT} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(F_i - O_i)^2}$	Canada 📕 🌞 📕	GIOPS- CONCEPTS	NEMO 1/4	
• $RMSE_{per} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(B_i - O_i)^2}$	France	PSY3 & PSY4	NEMO 1/4 &1/12	
• $PSS = 1 - \frac{RMSE_{FCT}}{RMSE_{per}}$	Australia 🎽	BLUEllink-OceanMAPS	MOM4 10km around Australia but low resolution further out	
• $CSS = 1 - \frac{RMSE_{FCT}}{RMSE_{TCT}}$	U.K.	FOAM	NEMO 1/4	
• $AC = \frac{\sum (F-C)(O-C)}{\sqrt{\sum (T-C)(O-C)}}$	USA	RTOFS Global	HYCOM 1/12	
$\sqrt{\sum}(F-C)^2\sqrt{\sum}(F-O)^2$	China *	NMEFC- MaCOM	MaCOM 1/12	

 $F-Forecast,\,O-Observation,\,C-Climatic,\,B$ - Best estimate

IVTT Class 4: SST

RMSE of MaCOM SST is about $0.56 \sim 0.64^{\circ}$ C

RMSE of MaCOM T profile is about 0.63—0.69°C RMSE of MaCOM S profile is about 0.08PSU

RMSE of MaCOM SLA is about 0.06m

July 1st□ 2021--June 30th□ 2022

Intercomparision and Validation

IVTT class4

	T(°C)	S(psu)	SST(°C)	SLA(m)
FOAM 🗮	0.61	0.08	0.49	0.06
PSY4	0.63	0.08	0.58	0.06
MaCOM 🎽	0.63	0.08	0.59	0.06
BLK 🗮	0.70	0.10	0.50	0.07
RTOFS	0.94	0.13	0.56	0.09
CMCC	0.80	0.10	0.56	0.06
GIOPS 📕 🌞	0.57	0.08	0.61	0.07
NMEFC_NEMO	0.79	0.12	0.53	0.07

July 1st□ 2021--June 30th□ 2022

2.2 Finite-Volume WAve Model (FVWAM)

a GPU-accelerated, WAM-family ocean wave model based on unstructured Voronoi meshes FVWAM is a WAM-family model with the following features:

- WAM-family: source terms entirely from WAM6 (Mywave project)
- Finite Volume Approach based on the unstructured Voronoi meshes is ported to the WAM6 for wave propagation.
 - Seamless integration of global to regional modeling
- Efficient domain decomposition for scalability, and GPU acceleration empowered by OpenACC.
 - Lightweighted and "Green"

Propagation scheme based on FVM

Model Application: Routine Forecasts

60°N

60*

180° 120°W 60°W

Daily operation, Twice						
Wind force	GRAPES/CMA, GFS/NCEP, or Holland parametric wind model					
Spatial resolution	Global10km -> NWP 6km					
Spectral resolution	36 Directions &35 Frequencies 0.0375 1.0Hz					
Time step	120 s					
Forecast valid	7 d					
Updated at	00UTC 12UTC					
Output	SWH, Tp, Direction					
Output interval	1hrs					

60°E 120°E 180° 120°W 60°W

0.00

60°E 120°E 180° 120°W 60

- 0.75 - 0.50 - 0.25

20

10

Model validation

- Model Runs: FVWAM 10km Global Wave Hindcast of 2021
 - (H_s, T_m) Wind Force \square ERA5 Wind ($U_{10m}^{Neutral}$)
- Observations: HY-2B scatter, altimeter & CFOSAT
 - Buoy (SOA, China; NDBC, NOAA)

HY2B

(Chinese-French Oceanography Satellite) Payloads: SCAT, SWIM (wavelength&direction)

CFOSAT

F0.300

MEG600

IE1200 IF1300 F 1,700

F1400

MF1400

WF1400 WT400

1.50

1.76

RMSE distribution off the Chinese coasts

Correlation distribution off the Chinese coasts

FVWAM Correlation coef: 0.9~0.97; Modeling results and observations are similar in terms of nRMSE

EV WAM NED SHI

normalized RMSEs at each • buoy mostly around 0.3, ranging from 0.2-0.4

Model validation with NDBC buoys

FVWAM Wave in-situ verification □ NDBC Buoy□

Model validation by satellite

with **CFOSAT**

	n	RMSE	MAE	MRE	R
Spring	30690	0.33	0.24	0.2	0.92
Summer	30225	0.41	0.24	0.24	0.86
Autumn	30622	0.47	0.3	0.22	0.90
Winter	29078	0.45	0.31	0.16	0.92
Entire Year	120615	0.42	0.27	0.21	0.92

PART 3

Progress in Ocean Artificial Intelligent Forecasting

3.1 Artificial Intelligent Wave Forecasting

Wave FCST

Deep Learning

1. Serialized parallel output of ocean wave forecast results for each time

	Steps	T _{0-m}	•••••	T ₀₋₁	T ₀	T ₁	T ₂	T ₃	•••••	T _n	
Sequential model	Wind(u,v)										AI Wa
	Wave(swh)										

Same as traditional physics mode, using T0-m... T0...... The wind field sequence at time T0+n directly obtains T1...... Wave field prediction sequence at time T0+n

2. More direct and efficient use of observational information beyond physical model accuracy

3. Order of magnitude reduction in computation time (subminute and lightweight) compared to numerical wave models

Artificial Intelligent Wave Forecasting

Data-driven intelligent ocean wave prediction system

Building an Intelligent Wave AI Forecasting Model Based on Spatio-Temporal Attention Mechanisms

Artificial Intelligent Wave Forecasting

AI forecast prducts vs operational prducts from ECMWF

Based on buoy observation in China, the accuracy of AI wave prediction model is superior to ECMWF operational wave significant wave height product

MAE	AiWave	ECMWF	Imp.Per
+6 hr	0.172	0.197	12.7 %
+12 hr	0.192	0.206	6.8 %
+18 hr	0.201	0.215	6.5 %
+24 hr	0.210	0.217	3.2 %
+30 hr	0.215	0.227	5.3 %
+36 hr	0.219	0.228	3.9 %
+42 hr	0.223	0.236	5.5 %
+48 hr	0.225	0.241	6.6 %

3.2 Artificial Intelligent SST prediction model

- Method: Convolutional LSTM Network (ConvLSTM)
 Validaiton Dataset: Using sea surface temperature observations (stations, buoys, volunteer ships) and MGDSST satellite remote sensing sea surface temperature fusion data;
- □ Validation Periods: January 1st to May 1st,2022
- Validation Results: 24-hour forecast RMSE is <0.2°C; The3-day forecast RMSE is <0.5°C; The 7-day forecast RMSE is <0.8°C.

24h

110

PART 4

Future perspective

Future perspective

- To develop a new large-scale GPU super-computing platform with multidisciplinary integration of ocean, atmosphere and earth.
- To apply advanced technology such as supper data analysis, scientific engineering computing and artificial intelligence.

Thanks for your attention.